Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Bandit Exploration (2002.06772v2)

Published 17 Feb 2020 in cs.LG and stat.ML

Abstract: Exploration policies in Bayesian bandits maximize the average reward over problem instances drawn from some distribution $\mathcal{P}$. In this work, we learn such policies for an unknown distribution $\mathcal{P}$ using samples from $\mathcal{P}$. Our approach is a form of meta-learning and exploits properties of $\mathcal{P}$ without making strong assumptions about its form. To do this, we parameterize our policies in a differentiable way and optimize them by policy gradients, an approach that is general and easy to implement. We derive effective gradient estimators and introduce novel variance reduction techniques. We also analyze and experiment with various bandit policy classes, including neural networks and a novel softmax policy. The latter has regret guarantees and is a natural starting point for our optimization. Our experiments show the versatility of our approach. We also observe that neural network policies can learn implicit biases expressed only through the sampled instances.

Citations (7)

Summary

We haven't generated a summary for this paper yet.