Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor train construction from tensor actions, with application to compression of large high order derivative tensors (2002.06244v2)

Published 14 Feb 2020 in math.NA and cs.NA

Abstract: We present a method for converting tensors into tensor train format based on actions of the tensor as a vector-valued multilinear function. Existing methods for constructing tensor trains require access to "array entries" of the tensor and are therefore inefficient or computationally prohibitive if the tensor is accessible only through its action, especially for high order tensors. Our method permits efficient tensor train compression of large high order derivative tensors for nonlinear mappings that are implicitly defined through the solution of a system of equations. Array entries of these derivative tensors are not directly accessible, but actions of these tensors can be computed efficiently via a procedure that we discuss. Such tensors are often amenable to tensor train compression in theory, but until now no efficient algorithm existed to convert them into tensor train format. We demonstrate our method by compressing a Hilbert tensor of size $41 \times 42 \times 43 \times 44 \times 45$, and by forming high order (up to $5\text{th}$ order derivatives/$6\text{th}$ order tensors) Taylor series surrogates of the noise-whitened parameter-to-output map for a stochastic partial differential equation with boundary output.

Citations (14)

Summary

We haven't generated a summary for this paper yet.