Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the complexity of finding large odd induced subgraphs and odd colorings (2002.06078v2)

Published 14 Feb 2020 in cs.DS, cs.CC, and math.CO

Abstract: We study the complexity of the problems of finding, given a graph $G$, a largest induced subgraph of $G$ with all degrees odd (called an odd subgraph), and the smallest number of odd subgraphs that partition $V(G)$. We call these parameters ${\sf mos}(G)$ and $\chi_{{\sf odd}}(G)$, respectively. We prove that deciding whether $\chi_{{\sf odd}}(G) \leq q$ is polynomial-time solvable if $q \leq 2$, and NP-complete otherwise. We provide algorithms in time $2{O({\sf rw})} \cdot n{O(1)}$ and $2{O(q \cdot {\sf rw})} \cdot n{O(1)}$ to compute ${\sf mos}(G)$ and to decide whether $\chi_{{\sf odd}}(G) \leq q$ on $n$-vertex graphs of rank-width at most ${\sf rw}$, respectively, and we prove that the dependency on rank-width is asymptotically optimal under the ETH. Finally, we give some tight bounds for these parameters on restricted graph classes or in relation to other parameters.

Citations (8)

Summary

We haven't generated a summary for this paper yet.