Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Bayesian inference for the Extended Plackett-Luce model (2002.05953v1)

Published 14 Feb 2020 in stat.AP and stat.CO

Abstract: The analysis of rank ordered data has a long history in the statistical literature across a diverse range of applications. In this paper we consider the Extended Plackett-Luce model that induces a flexible (discrete) distribution over permutations. The parameter space of this distribution is a combination of potentially high-dimensional discrete and continuous components and this presents challenges for parameter interpretability and also posterior computation. Particular emphasis is placed on the interpretation of the parameters in terms of observable quantities and we propose a general framework for preserving the mode of the prior predictive distribution. Posterior sampling is achieved using an effective simulation based approach that does not require imposing restrictions on the parameter space. Working in the Bayesian framework permits a natural representation of the posterior predictive distribution and we draw on this distribution to address the rank aggregation problem and also to identify potential lack of model fit. The flexibility of the Extended Plackett-Luce model along with the effectiveness of the proposed sampling scheme are demonstrated using several simulation studies and real data examples.

Summary

We haven't generated a summary for this paper yet.