Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic Complexity of Isolate Secure Domination in Graphs (2002.05538v1)

Published 12 Feb 2020 in cs.DM and cs.CC

Abstract: A dominating set $S$ is an Isolate Dominating Set (IDS) if the induced subgraph $G[S]$ has at least one isolated vertex. In this paper, we initiate the study of new domination parameter called, isolate secure domination. An isolate dominating set $S\subseteq V$ is an isolate secure dominating set (ISDS), if for each vertex $u \in V \setminus S$, there exists a neighboring vertex $v$ of $u$ in $S$ such that $(S \setminus {v}) \cup {u}$ is an IDS of $G$. The minimum cardinality of an ISDS of $G$ is called as an isolate secure domination number, and is denoted by $\gamma_{0s}(G)$. Given a graph $ G=(V,E)$ and a positive integer $ k,$ the ISDM problem is to check whether $ G $ has an isolate secure dominating set of size at most $ k.$ We prove that ISDM is NP-complete even when restricted to bipartite graphs and split graphs. We also show that ISDM can be solved in linear time for graphs of bounded tree-width.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.