Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hierarchy of Limitations in Machine Learning (2002.05193v2)

Published 12 Feb 2020 in cs.CY, cs.LG, econ.EM, math.ST, stat.ML, and stat.TH

Abstract: "All models are wrong, but some are useful", wrote George E. P. Box (1979). Machine learning has focused on the usefulness of probability models for prediction in social systems, but is only now coming to grips with the ways in which these models are wrong---and the consequences of those shortcomings. This paper attempts a comprehensive, structured overview of the specific conceptual, procedural, and statistical limitations of models in machine learning when applied to society. Machine learning modelers themselves can use the described hierarchy to identify possible failure points and think through how to address them, and consumers of machine learning models can know what to question when confronted with the decision about if, where, and how to apply machine learning. The limitations go from commitments inherent in quantification itself, through to showing how unmodeled dependencies can lead to cross-validation being overly optimistic as a way of assessing model performance.

Citations (51)

Summary

We haven't generated a summary for this paper yet.