Papers
Topics
Authors
Recent
2000 character limit reached

Active Learning for Sound Event Detection

Published 12 Feb 2020 in eess.AS, cs.LG, cs.SD, and stat.ML | (2002.05033v2)

Abstract: This paper proposes an active learning system for sound event detection (SED). It aims at maximizing the accuracy of a learned SED model with limited annotation effort. The proposed system analyzes an initially unlabeled audio dataset, from which it selects sound segments for manual annotation. The candidate segments are generated based on a proposed change point detection approach, and the selection is based on the principle of mismatch-first farthest-traversal. During the training of SED models, recordings are used as training inputs, preserving the long-term context for annotated segments. The proposed system clearly outperforms reference methods in the two datasets used for evaluation (TUT Rare Sound 2017 and TAU Spatial Sound 2019). Training with recordings as context outperforms training with only annotated segments. Mismatch-first farthest-traversal outperforms reference sample selection methods based on random sampling and uncertainty sampling. Remarkably, the required annotation effort can be greatly reduced on the dataset where target sound events are rare: by annotating only 2% of the training data, the achieved SED performance is similar to annotating all the training data.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.