Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A polynomial time parallel algorithm for graph isomorphism using a quasipolynomial number of processors (2002.04638v1)

Published 11 Feb 2020 in cs.DS and cs.DC

Abstract: The Graph Isomorphism (GI) problem is a theoretically interesting problem because it has not been proven to be in P nor to be NP-complete. Babai made a breakthrough in 2015 when announcing a quasipolynomial time algorithm for GI problem. Babai's work gives the most theoretically efficient algorithm for GI, as well as a strong evidence favoring the idea that class GI $\ne$ NP and thus P $\ne$ NP. Based on Babai's algorithm, we prove that GI can further be solved by a parallel algorithm that runs in polynomial time using a quasipolynomial number of processors. We achieve that result by identifying the bottlenecks in Babai's algorithms and parallelizing them. In particular, we prove that color refinement can be computed in parallel logarithmic time using a polynomial number of processors, and the $k$-dimensional WL refinement can be computed in parallel polynomial time using a quasipolynomial number of processors. Our work suggests that Graph Isomorphism and GI-complete problems can be computed efficiently in a parallel computer, and provides insights on speeding up parallel GI programs in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.