Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytic torsion for arithmetic locally symmetric manifolds and approximation of $L^2$-torsion (2002.04598v3)

Published 11 Feb 2020 in math.RT

Abstract: In this paper we define a regularized version of the analytic torsion for quotients of a symmetric space of non-positive curvature by arithmetic lattices. The definition is based on the study of the renormalized trace of the corresponding heat operators, which is defined as the geometric side of the Arthur trace formula applied to the heat kernel. Then we study the limiting behavior of the analytic torsion as the lattices run through a sequence of congruence subgroups of a fixed arithmetic subgroup. Our main result states that for sequences of principal congruence subgroups, which converge to 1 at a fixed finite set of places and strongly acyclic flat bundles, the logarithm of the analytic torsion, divided by the index of the subgroup, converges to the $L2$-analytic torsion.

Summary

We haven't generated a summary for this paper yet.