Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration (2002.03875v3)

Published 10 Feb 2020 in stat.ML and cs.LG

Abstract: The hypothesis that sub-network initializations (lottery) exist within the initializations of over-parameterized networks, which when trained in isolation produce highly generalizable models, has led to crucial insights into network initialization and has enabled efficient inferencing. Supervised models with uncalibrated confidences tend to be overconfident even when making wrong prediction. In this paper, for the first time, we study how explicit confidence calibration in the over-parameterized network impacts the quality of the resulting lottery tickets. More specifically, we incorporate a suite of calibration strategies, ranging from mixup regularization, variance-weighted confidence calibration to the newly proposed likelihood-based calibration and normalized bin assignment strategies. Furthermore, we explore different combinations of architectures and datasets, and make a number of key findings about the role of confidence calibration. Our empirical studies reveal that including calibration mechanisms consistently lead to more effective lottery tickets, in terms of accuracy as well as empirical calibration metrics, even when retrained using data with challenging distribution shifts with respect to the source dataset.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.