Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymmetric Cell Transmission Model-Based, Ramp-Connected Robust Traffic Density Estimation under Bounded Disturbances (2002.03530v1)

Published 10 Feb 2020 in eess.SY, cs.SY, and math.OC

Abstract: In modern transportation systems, traffic congestion is inevitable. To minimize the loss caused by congestion, various control strategies have been developed most of which rely on observing real-time traffic conditions. As vintage traffic sensors are limited, traffic density estimation is very helpful for gaining network-wide observability. This paper deals with this problem by first, presenting a traffic model for stretched highway having multiple ramps built based on asymmetric cell transmission model (ACTM). Second, based on the assumption that the encompassed nonlinearity of the ACTM is Lipschitz, a robust dynamic observer framework for performing traffic density estimation is proposed. Numerical test results show that the observer yields a sufficient performance in estimating traffic densities having noisy measurements, while being computationally faster the Unscented Kalman Filter in performing real-time estimation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.