Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Pólya--Vinogradov inequality for short character sums (2002.02640v2)

Published 7 Feb 2020 in math.NT

Abstract: In this paper we obtain a variation of the P\'{o}lya--Vinogradov inequality with the sum restricted to a certain height. Assume $\chi$ to be a primitive character modulo $q$, $\epsilon > 0$ and $N\le q{1-\gamma}$, with $0\le \gamma \le 1/3$. We prove that \begin{equation*} \left|\sum_{n=1}N \chi(n) \right|\le c(\frac{1}{3}-\gamma+\epsilon)\sqrt{q}\log q \end{equation*} with $c=2/\pi2+o(1)$ if $\chi$ is even and $c=1/\pi+o(1)$ if $\chi$ is odd.

Summary

We haven't generated a summary for this paper yet.