Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal-adaptive Hierarchical Reinforcement Learning (2002.02080v1)

Published 6 Feb 2020 in cs.AI

Abstract: Hierarchical reinforcement learning (HRL) helps address large-scale and sparse reward issues in reinforcement learning. In HRL, the policy model has an inner representation structured in levels. With this structure, the reinforcement learning task is expected to be decomposed into corresponding levels with sub-tasks, and thus the learning can be more efficient. In HRL, although it is intuitive that a high-level policy only needs to make macro decisions in a low frequency, the exact frequency is hard to be simply determined. Previous HRL approaches often employed a fixed-time skip strategy or learn a terminal condition without taking account of the context, which, however, not only requires manual adjustments but also sacrifices some decision granularity. In this paper, we propose the \emph{temporal-adaptive hierarchical policy learning} (TEMPLE) structure, which uses a temporal gate to adaptively control the high-level policy decision frequency. We train the TEMPLE structure with PPO and test its performance in a range of environments including 2-D rooms, Mujoco tasks, and Atari games. The results show that the TEMPLE structure can lead to improved performance in these environments with a sequential adaptive high-level control.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wen-Ji Zhou (5 papers)
  2. Yang Yu (385 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.