Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
36 tokens/sec
GPT-5 High Premium
34 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
148 tokens/sec
2000 character limit reached

Spacetime Harmonic Functions and the Mass of 3-Dimensional Asymptotically Flat Initial Data for the Einstein Equations (2002.01534v3)

Published 4 Feb 2020 in math.DG, gr-qc, and hep-th

Abstract: We give a lower bound for the Lorentz length of the ADM energy-momentum vector (ADM mass) of 3-dimensional asymptotically flat initial data sets for the Einstein equations. The bound is given in terms of linear growth `spacetime harmonic functions' in addition to the energy-momentum density of matter fields, and is valid regardless of whether the dominant energy condition holds or whether the data possess a boundary. A corollary of this result is a new proof of the spacetime positive mass theorem for complete initial data or those with weakly trapped surface boundary, and includes the rigidity statement which asserts that the mass vanishes if and only if the data arise from Minkowski space. The proof has some analogy with both the Witten spinorial approach as well as the marginally outer trapped surface (MOTS) method of Eichmair, Huang, Lee, and Schoen. Furthermore, this paper generalizes the harmonic level set technique used in the Riemannian case by Bray, Stern, and the second and third authors, albeit with a different class of level sets. Thus, even in the time-symmetric (Riemannian) case a new inequality is achieved.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube