Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit Theorems for Branching Processes with Immigration in a Random Environment (2002.00634v1)

Published 3 Feb 2020 in math.PR

Abstract: We investigate subcritical Galton-Watson branching processes with immigration in a random environment. Using Goldie's implicit renewal theory we show that under general Cram\'er condition the stationary distribution has a power law tail. We determine the tail process of the stationary Markov chain, prove point process convergence, and convergence of the partial sums. The original motivation comes from Kesten, Kozlov and Spitzer seminal 1975 paper, which connects a random walk in a random environment model to a special Galton-Watson process with immigration in a random environment. We obtain new results even in this very special setting.

Summary

We haven't generated a summary for this paper yet.