Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-existence of translation-invariant derivations on algebras of measurable functions (2002.00590v1)

Published 3 Feb 2020 in math.FA and math.OA

Abstract: Let $S(0,1)$ be the $$-algebra of all classes of Lebesgue measurable functions on the unit interval $(0,1)$ and let $(\mathcal{A},\left|\cdot \right|_\mathcal{A})$ be a complete symmetric $\Delta$-normed $$-subalgebra of $S(0,1)$, in which simple functions are dense, e.g., $L_\infty (0,1)$, $L_{\log}(0,1)$, $S(0,1)$ and the Arens algebra $L\omega (0,1)$ equipped with their natural $\Delta$-norms. We show that there exists no non-trivial derivation $ \delta: \mathcal{A} \to S(0,1)$ commuting with all dyadic translations of the unit interval. Let $\mathcal{M}$ be a type $II$ (or $I_\infty$) von Neumann algebra, $\mathcal{A}$ be its abelian von Neumann subalgebra, let $S(\mathcal{M})$ be the algebra of all measurable operators affiliated with $\mathcal{M}$. We show that any non-trivial derivation $\delta:\mathcal{A} \to S(\mathcal{A})$ can not be extended to a derivation on $S(\mathcal{M})$. In particular, we answer an untreated question in \cite{BKS1}.

Summary

We haven't generated a summary for this paper yet.