Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bertrand-DR: Improving Text-to-SQL using a Discriminative Re-ranker (2002.00557v2)

Published 3 Feb 2020 in cs.CL, cs.AI, cs.LG, and stat.ML

Abstract: To access data stored in relational databases, users need to understand the database schema and write a query using a query language such as SQL. To simplify this task, text-to-SQL models attempt to translate a user's natural language question to corresponding SQL query. Recently, several generative text-to-SQL models have been developed. We propose a novel discriminative re-ranker to improve the performance of generative text-to-SQL models by extracting the best SQL query from the beam output predicted by the text-to-SQL generator, resulting in improved performance in the cases where the best query was in the candidate list, but not at the top of the list. We build the re-ranker as a schema agnostic BERT fine-tuned classifier. We analyze relative strengths of the text-to-SQL and re-ranker models across different query hardness levels, and suggest how to combine the two models for optimal performance. We demonstrate the effectiveness of the re-ranker by applying it to two state-of-the-art text-to-SQL models, and achieve top 4 score on the Spider leaderboard at the time of writing this article.

Citations (27)

Summary

We haven't generated a summary for this paper yet.