Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interference Classification Using Deep Neural Networks (2002.00533v2)

Published 3 Feb 2020 in eess.SP and cs.LG

Abstract: The recent success in implementing supervised learning to classify modulation types suggests that other problems akin to modulation classification would eventually benefit from that implementation. One of these problems is classifying the interference type added to a signal-of-interest, also known as interference classification. In this paper, we propose an interference classification method using a deep neural network. We generate five distinct types of interfering signals then use both the power-spectral density (PSD) and the cyclic spectrum of the received signal as input features to the network. The computer experiments reveal that using the received signal PSD outperforms using its cyclic spectrum in terms of accuracy. In addition, the same experiments show that the feed-forward networks yield better accuracy than classic methods. The proposed classifier aids the subsequent stage in the receiver chain with choosing the appropriate mitigation algorithm and also can coexist with modulation-classification methods to further improve the classifier accuracy.

Citations (8)

Summary

We haven't generated a summary for this paper yet.