Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Pruning for Quantized Neural Networks (2002.00523v1)

Published 3 Feb 2020 in cs.CV

Abstract: Neural network quantization and pruning are two techniques commonly used to reduce the computational complexity and memory footprint of these models for deployment. However, most existing pruning strategies operate on full-precision and cannot be directly applied to discrete parameter distributions after quantization. In contrast, we study a combination of these two techniques to achieve further network compression. In particular, we propose an effective pruning strategy for selecting redundant low-precision filters. Furthermore, we leverage Bayesian optimization to efficiently determine the pruning ratio for each layer. We conduct extensive experiments on CIFAR-10 and ImageNet with various architectures and precisions. In particular, for ResNet-18 on ImageNet, we prune 26.12% of the model size with Binarized Neural Network quantization, achieving a top-1 classification accuracy of 47.32% in a model of 2.47 MB and 59.30% with a 2-bit DoReFa-Net in 4.36 MB.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Luis Guerra (2 papers)
  2. Bohan Zhuang (79 papers)
  3. Ian Reid (174 papers)
  4. Tom Drummond (70 papers)
Citations (19)