Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational projector-augmented wave method: a full-potential approach for electronic structure calculations in solid-state physics (2002.00512v1)

Published 2 Feb 2020 in math.NA, cond-mat.mtrl-sci, cs.NA, math-ph, and math.MP

Abstract: In solid-state physics, energies of crystals are usually computed with a plane-wave discretization of Kohn-Sham equations. However the presence of Coulomb singularities requires the use of large plane-wave cut-offs to produce accurate numerical results. In this paper, an analysis of the plane-wave convergence of the eigenvalues of periodic linear Hamiltonians with Coulomb potentials using the variational projector-augmented wave (VPAW) method is presented. In the VPAW method, an invertible transformation is applied to the original eigenvalue problem, acting locally in balls centered at the singularities. In this setting, a generalized eigenvalue problem needs to be solved using plane-waves. We show that cusps of the eigenfunctions of the VPAW eigenvalue problem at the positions of the nuclei are significantly reduced. These eigenfunctions have however a higher-order derivative discontinuity at the spheres centered at the nuclei. By balancing both sources of error, we show that the VPAW method can drastically improve the plane-wave convergence of the eigenvalues with a minor additional computational cost. Numerical tests are provided confirming the efficiency of the method to treat Coulomb singularities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.