Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Caterpillars on three and four leaves are sufficient to reconstruct normal networks (2002.00483v1)

Published 2 Feb 2020 in math.CO and cs.DM

Abstract: While every rooted binary phylogenetic tree is determined by its set of displayed rooted triples, such a result does not hold for an arbitrary rooted binary phylogenetic network. In particular, there exist two non-isomorphic rooted binary temporal normal networks that display the same set of rooted triples. Moreover, without any structural constraint on the rooted phylogenetic networks under consideration, similarly negative results have also been established for binets and trinets which are rooted subnetworks on two and three leaves, respectively. Hence, in general, piecing together a rooted phylogenetic network from such a set of small building blocks appears insurmountable. In contrast to these results, in this paper, we show that a rooted binary normal network is determined by its sets of displayed caterpillars (particular type of subtrees) on three and four leaves. The proof is constructive and realises a polynomial-time algorithm that takes the sets of caterpillars on three and four leaves displayed by a rooted binary normal network and, up to isomorphism, reconstructs this network.

Summary

We haven't generated a summary for this paper yet.