Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Neural network approach for the dynamics on the normally hyperbolic invariant manifold of periodically driven systems (2002.00478v1)

Published 2 Feb 2020 in physics.chem-ph and nlin.CD

Abstract: Chemical reactions in multidimensional systems are often described by a rank-1 saddle, whose stable and unstable manifolds intersect in the normally hyperbolic invariant manifold (NHIM). Trajectories started on the NHIM in principle never leave this manifold when propagated forward or backward in time. However, the numerical investigation of the dynamics on the NHIM is difficult because of the instability of the motion. We apply a neural network to describe time-dependent NHIMs and use this network to stabilize the motion on the NHIM for a periodically driven model system with two degrees of freedom. The method allows us to analyze the dynamics on the NHIM via Poincar\'e surfaces of section (PSOS) and to determine the transition state (TS) trajectory as a periodic orbit with the same periodicity as the driving saddle, viz. a fixed point of the PSOS surrounded by near-integrable tori. Based on Transition State Theory and a Floquet analysis of a periodic TS trajectory we compute the rate constant of the reaction with significantly reduced numerical effort compared to the propagation of a large trajectory ensemble.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.