Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parafermionic bases of standard modules for affine Lie algebras (2002.00435v2)

Published 2 Feb 2020 in math.QA, hep-th, and math.RT

Abstract: In this paper we construct combinatorial bases of parafermionic spaces associated with the standard modules of the rectangular highest weights for the untwisted affine Lie algebras. Our construction is a modification of G. Georgiev's construction for the affine Lie algebra $\widehat{\mathfrak sl}(n+1,\mathbb C)$---the constructed parafermionic bases are projections of the quasi-particle bases of the principal subspaces, obtained previously in a series of papers by the first two authors. As a consequence we prove the character formula of A. Kuniba, T. Nakanishi and J. Suzuki for all non-simply-laced untwisted affine Lie algebras.

Summary

We haven't generated a summary for this paper yet.