2000 character limit reached
Parafermionic bases of standard modules for affine Lie algebras (2002.00435v2)
Published 2 Feb 2020 in math.QA, hep-th, and math.RT
Abstract: In this paper we construct combinatorial bases of parafermionic spaces associated with the standard modules of the rectangular highest weights for the untwisted affine Lie algebras. Our construction is a modification of G. Georgiev's construction for the affine Lie algebra $\widehat{\mathfrak sl}(n+1,\mathbb C)$---the constructed parafermionic bases are projections of the quasi-particle bases of the principal subspaces, obtained previously in a series of papers by the first two authors. As a consequence we prove the character formula of A. Kuniba, T. Nakanishi and J. Suzuki for all non-simply-laced untwisted affine Lie algebras.