Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Monte Carlo Dropout and Error Correction for Radio Transmitter Classification (2001.11963v1)

Published 31 Jan 2020 in eess.SP, cs.LG, and cs.NI

Abstract: Monte Carlo dropout may effectively capture model uncertainty in deep learning, where a measure of uncertainty is obtained by using multiple instances of dropout at test time. However, Monte Carlo dropout is applied across the whole network and thus significantly increases the computational complexity, proportional to the number of instances. To reduce the computational complexity, at test time we enable dropout layers only near the output of the neural network and reuse the computation from prior layers while keeping, if any, other dropout layers disabled. Additionally, we leverage the side information about the ideal distributions for various input samples to do `error correction' on the predictions. We apply these techniques to the radio frequency (RF) transmitter classification problem and show that the proposed algorithm is able to provide better prediction uncertainty than the simple ensemble average algorithm and can be used to effectively identify transmitters that are not in the training data set while correctly classifying transmitters it has been trained on.

Citations (4)

Summary

We haven't generated a summary for this paper yet.