Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-reversibly updating a uniform [0,1] value for Metropolis accept/reject decisions (2001.11950v1)

Published 31 Jan 2020 in stat.CO and cs.LG

Abstract: I show how it can be beneficial to express Metropolis accept/reject decisions in terms of comparison with a uniform [0,1] value, u, and to then update u non-reversibly, as part of the Markov chain state, rather than sampling it independently each iteration. This provides a small improvement for random walk Metropolis and Langevin updates in high dimensions. It produces a larger improvement when using Langevin updates with persistent momentum, giving performance comparable to that of Hamiltonian Monte Carlo (HMC) with long trajectories. This is of significance when some variables are updated by other methods, since if HMC is used, these updates can be done only between trajectories, whereas they can be done more often with Langevin updates. I demonstrate that for a problem with some continuous variables, updated by HMC or Langevin updates, and also discrete variables, updated by Gibbs sampling between updates of the continuous variables, Langevin with persistent momentum and non-reversible updates to u samples nearly a factor of two more efficiently than HMC. Benefits are also seen for a Bayesian neural network model in which hyperparameters are updated by Gibbs sampling.

Citations (10)

Summary

We haven't generated a summary for this paper yet.