Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Peers at the Wireless Edge (2001.11567v1)

Published 30 Jan 2020 in cs.NI and eess.SP

Abstract: The last mile connection is dominated by wireless links where heterogeneous nodes share the limited and already crowded electromagnetic spectrum. Current contention based decentralized wireless access system is reactive in nature to mitigate the interference. In this paper, we propose to use neural networks to learn and predict spectrum availability in a collaborative manner such that its availability can be predicted with a high accuracy to maximize wireless access and minimize interference between simultaneous links. Edge nodes have a wide range of sensing and computation capabilities, while often using different operator networks, who might be reluctant to share their models. Hence, we introduce a peer to peer Federated Learning model, where a local model is trained based on the sensing results of each node and shared among its peers to create a global model. The need for a base station or access point to act as centralized parameter server is replaced by empowering the edge nodes as aggregators of the local models and minimizing the communication overhead for model transmission. We generate wireless channel access data, which is used to train the local models. Simulation results for both local and global models show over 95% accuracy in predicting channel opportunities in various network topology.

Summary

We haven't generated a summary for this paper yet.