Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards an Ontology for Scenario Definition for the Assessment of Automated Vehicles: An Object-Oriented Framework (2001.11507v4)

Published 30 Jan 2020 in cs.AI and cs.SE

Abstract: The development of new assessment methods for the performance of automated vehicles is essential to enable the deployment of automated driving technologies, due to the complex operational domain of automated vehicles. One contributing method is scenario-based assessment in which test cases are derived from real-world road traffic scenarios obtained from driving data. Given the complexity of the reality that is being modeled in these scenarios, it is a challenge to define a structure for capturing these scenarios. An intensional definition that provides a set of characteristics that are deemed to be both necessary and sufficient to qualify as a scenario assures that the scenarios constructed are both complete and intercomparable. In this article, we develop a comprehensive and operable definition of the notion of scenario while considering existing definitions in the literature. This is achieved by proposing an object-oriented framework in which scenarios and their building blocks are defined as classes of objects having attributes, methods, and relationships with other objects. The object-oriented approach promotes clarity, modularity, reusability, and encapsulation of the objects. We provide definitions and justifications of each of the terms. Furthermore, the framework is used to translate the terms in a coding language that is publicly available.

Citations (43)

Summary

We haven't generated a summary for this paper yet.