Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prospects of tensor-based numerical modeling of the collective electrostatic potential in many-particle systems (2001.11393v1)

Published 30 Jan 2020 in math.NA and cs.NA

Abstract: Recently the rank-structured tensor approach suggested a progress in the numerical treatment of the long-range electrostatic potentials in many-particle systems and the respective interaction energy and forces [39,40,2]. In this paper, we outline the prospects for tensor-based numerical modeling of the collective electrostatic potential on lattices and in many-particle systems of general type. We generalize the approach initially introduced for the rank-structured grid-based calculation of the collective potentials on 3D lattices [39] to the case of many-particle systems with variable charges placed on $L{\otimes d}$ lattices and discretized on fine $n{\otimes d}$ Cartesian grids for arbitrary dimension $d$. As result, the interaction potential is represented in a parametric low-rank canonical format in $O(d L n)$ complexity. The energy is then calculated in $O(d L)$ operations. Electrostatics in large biomolecules is modeled by using the novel range-separated (RS) tensor format [2], which maintains the long-range part of the 3D collective potential of the many-body system represented on $n\times n \times n$ grid in a parametric low-rank form in $O(n)$-complexity. We show that the force field can be easily recovered by using the already precomputed electric field in the low-rank RS format. The RS tensor representation of the discretized Dirac delta [45] enables the efficient energy preserving regularization scheme for solving the 3D elliptic PDEs with strongly singular right-hand side arising in bio-sciences. We conclude that the rank-structured tensor-based approximation techniques provide the promising numerical tools for applications to many-body dynamics, protein docking and classification problems and for low-parametric interpolation of scattered data in data science.

Citations (4)

Summary

We haven't generated a summary for this paper yet.