Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Training for Aspect-Based Sentiment Analysis with BERT (2001.11316v4)

Published 30 Jan 2020 in cs.LG, cs.CL, and stat.ML

Abstract: Aspect-Based Sentiment Analysis (ABSA) deals with the extraction of sentiments and their targets. Collecting labeled data for this task in order to help neural networks generalize better can be laborious and time-consuming. As an alternative, similar data to the real-world examples can be produced artificially through an adversarial process which is carried out in the embedding space. Although these examples are not real sentences, they have been shown to act as a regularization method which can make neural networks more robust. In this work, we apply adversarial training, which was put forward by Goodfellow et al. (2014), to the post-trained BERT (BERT-PT) LLM proposed by Xu et al. (2019) on the two major tasks of Aspect Extraction and Aspect Sentiment Classification in sentiment analysis. After improving the results of post-trained BERT by an ablation study, we propose a novel architecture called BERT Adversarial Training (BAT) to utilize adversarial training in ABSA. The proposed model outperforms post-trained BERT in both tasks. To the best of our knowledge, this is the first study on the application of adversarial training in ABSA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Akbar Karimi (17 papers)
  2. Leonardo Rossi (15 papers)
  3. Andrea Prati (32 papers)
Citations (94)

Summary

We haven't generated a summary for this paper yet.