Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Linear Operator Construction and State Estimation with the Kalman Filter (2001.11256v3)

Published 30 Jan 2020 in stat.CO and stat.ML

Abstract: The Kalman filter is the most powerful tool for estimation of the states of a linear Gaussian system. In addition, using this method, an expectation maximization algorithm can be used to estimate the parameters of the model. However, this algorithm cannot function in real time. Thus, we propose a new method that can be used to estimate the transition matrices and the states of the system in real time. The proposed method uses three ideas: estimation in an observation space, a time-invariant interval, and an online learning framework. Applied to damped oscillation model, we have obtained extraordinary performance to estimate the matrices. In addition, by introducing localization and spatial uniformity to the proposed method, we have demonstrated that noise can be reduced in high-dimensional spatio-temporal data. Moreover, the proposed method has potential for use in areas such as weather forecasting and vector field analysis.

Summary

We haven't generated a summary for this paper yet.