Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain decomposition for entropy regularized optimal transport (2001.10986v2)

Published 29 Jan 2020 in math.OC, cs.NA, and math.NA

Abstract: We study Benamou's domain decomposition algorithm for optimal transport in the entropy regularized setting. The key observation is that the regularized variant converges to the globally optimal solution under very mild assumptions. We prove linear convergence of the algorithm with respect to the Kullback--Leibler divergence and illustrate the (potentially very slow) rates with numerical examples. On problems with sufficient geometric structure (such as Wasserstein distances between images) we expect much faster convergence. We then discuss important aspects of a computationally efficient implementation, such as adaptive sparsity, a coarse-to-fine scheme and parallelization, paving the way to numerically solving large-scale optimal transport problems. We demonstrate efficient numerical performance for computing the Wasserstein-2 distance between 2D images and observe that, even without parallelization, domain decomposition compares favorably to applying a single efficient implementation of the Sinkhorn algorithm in terms of runtime, memory and solution quality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mauro Bonafini (11 papers)
  2. Bernhard Schmitzer (35 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.