Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can graph properties have exponential quantum speedup? (2001.10520v1)

Published 28 Jan 2020 in quant-ph, cs.CC, and math.CO

Abstract: Quantum computers can sometimes exponentially outperform classical ones, but only for problems with sufficient structure. While it is well known that query problems with full permutation symmetry can have at most polynomial quantum speedup -- even for partial functions -- it is unclear how far this condition must be relaxed to enable exponential speedup. In particular, it is natural to ask whether exponential speedup is possible for (partial) graph properties, in which the input describes a graph and the output can only depend on its isomorphism class. We show that the answer to this question depends strongly on the input model. In the adjacency matrix model, we prove that the bounded-error randomized query complexity $R$ of any graph property $\mathcal{P}$ has $R(\mathcal{P}) = O(Q(\mathcal{P}){6})$, where $Q$ is the bounded-error quantum query complexity. This negatively resolves an open question of Montanaro and de Wolf in the adjacency matrix model. More generally, we prove $R(\mathcal{P}) = O(Q(\mathcal{P}){3l})$ for any $l$-uniform hypergraph property $\mathcal{P}$ in the adjacency matrix model. In direct contrast, in the adjacency list model for bounded-degree graphs, we exhibit a promise problem that shows an exponential separation between the randomized and quantum query complexities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.