Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partition functions on slightly squashed spheres and flux parameters (2001.10020v1)

Published 27 Jan 2020 in hep-th and gr-qc

Abstract: We argue that the conjectural relation between the subleading term in the small-squashing expansion of the free energy of general three-dimensional CFTs on squashed spheres and the stress-tensor three-point charge $t_4$ proposed in arXiv:1808.02052: $F_{\mathbb{S}3_{\varepsilon}}{(3)}(0)=\frac{1}{630}\pi4 C_{\scriptscriptstyle T} t_4$, holds for an infinite family of holographic higher-curvature theories. Using holographic calculations for quartic and quintic Generalized Quasi-topological gravities and general-order Quasi-topological gravities, we identify an analogous analytic relation between such term and the charges $t_2$ and $t_4$ valid for five-dimensional theories: $F_{\mathbb{S}5_{\varepsilon}}{(3)}(0)=\frac{2}{15}\pi6 C_{ \scriptscriptstyle T} \left[1+\frac{3}{40} t_2+\frac{23}{630} t_4\right]$. We test both conjectures using new analytic and numerical results for conformally-coupled scalars and free fermions, finding perfect agreement.

Summary

We haven't generated a summary for this paper yet.