Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tractable Reinforcement Learning of Signal Temporal Logic Objectives (2001.09467v2)

Published 26 Jan 2020 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Signal temporal logic (STL) is an expressive language to specify time-bound real-world robotic tasks and safety specifications. Recently, there has been an interest in learning optimal policies to satisfy STL specifications via reinforcement learning (RL). Learning to satisfy STL specifications often needs a sufficient length of state history to compute reward and the next action. The need for history results in exponential state-space growth for the learning problem. Thus the learning problem becomes computationally intractable for most real-world applications. In this paper, we propose a compact means to capture state history in a new augmented state-space representation. An approximation to the objective (maximizing probability of satisfaction) is proposed and solved for in the new augmented state-space. We show the performance bound of the approximate solution and compare it with the solution of an existing technique via simulations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Harish Venkataraman (1 paper)
  2. Derya Aksaray (15 papers)
  3. Peter Seiler (60 papers)
Citations (24)