Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning based Blind mmWave MIMO Beam Alignment (2001.09251v2)

Published 25 Jan 2020 in eess.SP, cs.IT, cs.LG, and math.IT

Abstract: Directional beamforming is a crucial component for realizing robust wireless communication systems using millimeter wave (mmWave) technology. Beam alignment using brute-force search of the space introduces time overhead while location aided blind beam alignment adds additional hardware requirements to the system. In this paper, we introduce a method for blind beam alignment based on the RF fingerprints of user equipment obtained by the base stations. The proposed system performs blind beam alignment on a multiple base station cellular environment with multiple mobile users using deep reinforcement learning. We present a novel neural network architecture that can handle a mix of both continuous and discrete actions and use policy gradient methods to train the model. Our results show that the proposed method can achieve a data rate of up to four times the traditional method without any overheads.

Citations (28)

Summary

We haven't generated a summary for this paper yet.