Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Validity, consonant plausibility measures, and conformal prediction (2001.09225v3)

Published 24 Jan 2020 in math.ST, stat.ML, and stat.TH

Abstract: Prediction of future observations is an important and challenging problem. The two mainstream approaches for quantifying prediction uncertainty use prediction regions and predictive distributions, respectively, with the latter believed to be more informative because it can perform other prediction-related tasks. The standard notion of validity, what we refer to here as Type-1 validity, focuses on coverage probability of prediction regions, while a notion of validity relevant to the other prediction-related tasks performed by predictive distributions is lacking. Here we present a new notion, called Type-2 validity, relevant to these other prediction tasks. We establish connections between Type-2 validity and coherence properties, and show that imprecise probability considerations are required in order to achieve it. We go on to show that both types of prediction validity can be achieved by interpreting the conformal prediction output as the contour function of a consonant plausibility measure. We also offer an alternative characterization of conformal prediction, based on a new nonparametric inferential model construction, wherein the appearance of consonance is natural, and prove its validity.

Citations (22)

Summary

We haven't generated a summary for this paper yet.