Papers
Topics
Authors
Recent
2000 character limit reached

Polarimetric Guided Nonlocal Means Covariance Matrix Estimation for Defoliation Mapping

Published 24 Jan 2020 in eess.IV and stat.ML | (2001.08976v2)

Abstract: In this study we investigate the potential for using synthetic aperture radar (SAR) data to provide high resolution defoliation and regrowth mapping of trees in the tundra-forest ecotone. Using aerial photographs, four areas with live forest and four areas with dead trees were identified. Quad-polarimetric SAR data from RADARSAT-2 was collected from the same area, and the complex multilook polarimetric covariance matrix was calculated using a novel extension of guided nonlocal means speckle filtering. The nonlocal approach allows us to preserve the high spatial resolution of single-look complex data, which is essential for accurate mapping of the sparsely scattered trees in the study area. Using a standard random forest classification algorithm, our filtering results in over $99.7 \%$ classification accuracy, higher than traditional speckle filtering methods, and on par with the classification accuracy based on optical data.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.