Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoding Physical Constraints in Differentiable Newton-Euler Algorithm (2001.08861v4)

Published 24 Jan 2020 in cs.RO and cs.LG

Abstract: The recursive Newton-Euler Algorithm (RNEA) is a popular technique for computing the dynamics of robots. RNEA can be framed as a differentiable computational graph, enabling the dynamics parameters of the robot to be learned from data via modern auto-differentiation toolboxes. However, the dynamics parameters learned in this manner can be physically implausible. In this work, we incorporate physical constraints in the learning by adding structure to the learned parameters. This results in a framework that can learn physically plausible dynamics via gradient descent, improving the training speed as well as generalization of the learned dynamics models. We evaluate our method on real-time inverse dynamics control tasks on a 7 degree of freedom robot arm, both in simulation and on the real robot. Our experiments study a spectrum of structure added to the parameters of the differentiable RNEA algorithm, and compare their performance and generalization.

Citations (53)

Summary

We haven't generated a summary for this paper yet.