Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interventions for Ranking in the Presence of Implicit Bias (2001.08767v1)

Published 23 Jan 2020 in cs.CY, cs.AI, cs.DS, cs.IR, and cs.LG

Abstract: Implicit bias is the unconscious attribution of particular qualities (or lack thereof) to a member from a particular social group (e.g., defined by gender or race). Studies on implicit bias have shown that these unconscious stereotypes can have adverse outcomes in various social contexts, such as job screening, teaching, or policing. Recently, (Kleinberg and Raghavan, 2018) considered a mathematical model for implicit bias and showed the effectiveness of the Rooney Rule as a constraint to improve the utility of the outcome for certain cases of the subset selection problem. Here we study the problem of designing interventions for the generalization of subset selection -- ranking -- that requires to output an ordered set and is a central primitive in various social and computational contexts. We present a family of simple and interpretable constraints and show that they can optimally mitigate implicit bias for a generalization of the model studied in (Kleinberg and Raghavan, 2018). Subsequently, we prove that under natural distributional assumptions on the utilities of items, simple, Rooney Rule-like, constraints can also surprisingly recover almost all the utility lost due to implicit biases. Finally, we augment our theoretical results with empirical findings on real-world distributions from the IIT-JEE (2009) dataset and the Semantic Scholar Research corpus.

Citations (64)

Summary

We haven't generated a summary for this paper yet.