2000 character limit reached
Toric spaces and face enumeration on simplicial manifolds (2001.08390v3)
Published 23 Jan 2020 in math.AT, math.AC, and math.CO
Abstract: In this paper, we study the well-know $g$-conjecture for rational homology spheres in a topological way. To do this, we construct a class of topological spaces with torus actions, which can be viewed as topological generalizations of toric varieties. Along this way we prove that after doing stellar subdivision operations at some middle dimensional faces of an arbitrary rational homology sphere, the $g$-conjecture is valid. Furthermore, we give topological proofs of several fundamental algebraic results about Buchsbaum complexes and simplicial manifolds. In this process, we also get a few interesting results in toric topology.