Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating naturalistic hand movements by behavior mining in long-term video and neural recordings (2001.08349v2)

Published 23 Jan 2020 in q-bio.NC, cs.CV, and eess.IV

Abstract: Recent technological advances in brain recording and artificial intelligence are propelling a new paradigm in neuroscience beyond the traditional controlled experiment. Rather than focusing on cued, repeated trials, naturalistic neuroscience studies neural processes underlying spontaneous behaviors performed in unconstrained settings. However, analyzing such unstructured data lacking a priori experimental design remains a significant challenge, especially when the data is multi-modal and long-term. Here we describe an automated approach for analyzing simultaneously recorded long-term, naturalistic electrocorticography (ECoG) and naturalistic behavior video data. We take a behavior-first approach to analyzing the long-term recordings. Using a combination of computer vision, discrete latent-variable modeling, and string pattern-matching on the behavioral video data, we find and annotate spontaneous human upper-limb movement events. We show results from our approach applied to data collected for 12 human subjects over 7--9 days for each subject. Our pipeline discovers and annotates over 40,000 instances of naturalistic human upper-limb movement events in the behavioral videos. Analysis of the simultaneously recorded brain data reveals neural signatures of movement that corroborate prior findings from traditional controlled experiments. We also prototype a decoder for a movement initiation detection task to demonstrate the efficacy of our pipeline as a source of training data for brain-computer interfacing applications. Our work addresses the unique data analysis challenges in studying naturalistic human behaviors, and contributes methods that may generalize to other neural recording modalities beyond ECoG. We publicly release our curated dataset, providing a resource to study naturalistic neural and behavioral variability at a scale not previously available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Satpreet H. Singh (3 papers)
  2. Steven M. Peterson (1 paper)
  3. Rajesh P. N. Rao (27 papers)
  4. Bingni W. Brunton (27 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.