Papers
Topics
Authors
Recent
2000 character limit reached

Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms

Published 23 Jan 2020 in quant-ph | (2001.08343v2)

Abstract: Quantum algorithms offer a dramatic speedup for computational problems in machine learning, material science, and chemistry. However, any near-term realizations of these algorithms will need to be heavily optimized to fit within the finite resources offered by existing noisy quantum hardware. Here, taking advantage of the strong adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a 3x reduction in circuit depth as compared to a standard decomposition. We implement two gate families: an iSWAP-like gate to attain an arbitrary swap angle, $\theta$, and a CPHASE gate that generates an arbitrary conditional phase, $\phi$. Using one of each of these gates, we can perform an arbitrary two-qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic Simulation, or fSim, gate set. We benchmark the fidelity of the iSWAP-like and CPHASE gate families as well as 525 other fSim gates spread evenly across the entire fSim($\theta$, $\phi$) parameter space achieving purity-limited average two-qubit Pauli error of $3.8 \times 10{-3}$ per fSim gate.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.