Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Neural Network Controllers Using Control Barrier Functions in the Presence of Disturbances (2001.08088v1)

Published 18 Jan 2020 in math.OC, cs.LG, cs.SY, eess.SY, and stat.ML

Abstract: Control Barrier Functions (CBF) have been recently utilized in the design of provably safe feedback control laws for nonlinear systems. These feedback control methods typically compute the next control input by solving an online Quadratic Program (QP). Solving QP in real-time can be a computationally expensive process for resource constraint systems. In this work, we propose to use imitation learning to learn Neural Network-based feedback controllers which will satisfy the CBF constraints. In the process, we also develop a new class of High Order CBF for systems under external disturbances. We demonstrate the framework on a unicycle model subject to external disturbances, e.g., wind or currents.

Citations (39)

Summary

We haven't generated a summary for this paper yet.