Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chirotopes of Random Points in Space are Realizable on a Small Integer Grid (2001.08062v1)

Published 22 Jan 2020 in cs.CG

Abstract: We prove that with high probability, a uniform sample of $n$ points in a convex domain in $\mathbb{R}d$ can be rounded to points on a grid of step size proportional to $1/n{d+1+\epsilon}$ without changing the underlying chirotope (oriented matroid). Therefore, chirotopes of random point sets can be encoded with $O(n\log n)$ bits. This is in stark contrast to the worst case, where the grid may be forced to have step size $1/2{2{\Omega(n)}}$ even for $d=2$. This result is a high-dimensional generalization of previous results on order types of random planar point sets due to Fabila-Monroy and Huemer (2017) and Devillers, Duchon, Glisse, and Goaoc (2018).

Citations (5)

Summary

We haven't generated a summary for this paper yet.