Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmenting GAIL with BC for sample efficient imitation learning (2001.07798v4)

Published 21 Jan 2020 in cs.LG and stat.ML

Abstract: Imitation learning is the problem of recovering an expert policy without access to a reward signal. Behavior cloning and GAIL are two widely used methods for performing imitation learning. Behavior cloning converges in a few iterations but doesn't achieve peak performance due to its inherent iid assumption about the state-action distribution. GAIL addresses the issue by accounting for the temporal dependencies when performing a state distribution matching between the agent and the expert. Although GAIL is sample efficient in the number of expert trajectories required, it is still not very sample efficient in terms of the environment interactions needed for convergence of the policy. Given the complementary benefits of both methods, we present a simple and elegant method to combine both methods to enable stable and sample efficient learning. Our algorithm is very simple to implement and integrates with different policy gradient algorithms. We demonstrate the effectiveness of the algorithm in low dimensional control tasks, gridworlds and in high dimensional image-based tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rohit Jena (16 papers)
  2. Changliu Liu (134 papers)
  3. Katia Sycara (93 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.