Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Sense Embeddings for Syntactic and Semantic Analogy for Portuguese (2001.07574v1)

Published 21 Jan 2020 in cs.CL

Abstract: Word embeddings are numerical vectors which can represent words or concepts in a low-dimensional continuous space. These vectors are able to capture useful syntactic and semantic information. The traditional approaches like Word2Vec, GloVe and FastText have a strict drawback: they produce a single vector representation per word ignoring the fact that ambiguous words can assume different meanings. In this paper we use techniques to generate sense embeddings and present the first experiments carried out for Portuguese. Our experiments show that sense vectors outperform traditional word vectors in syntactic and semantic analogy tasks, proving that the language resource generated here can improve the performance of NLP tasks in Portuguese.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (2)

Summary

We haven't generated a summary for this paper yet.