Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A node-charge graph-based online carshare rebalancing policy with capacitated electric charging (2001.07282v4)

Published 20 Jan 2020 in cs.DS, cs.CY, and math.OC

Abstract: Viability of electric car-sharing operations depends on rebalancing algorithms. Earlier methods in the literature suggest a trend toward non-myopic algorithms using queueing principles. We propose a new rebalancing policy using cost function approximation. The cost function is modeled as a p-median relocation problem with minimum cost flow conservation and path-based charging station capacities on a static node-charge graph structure. The cost function is NP-complete, so a heuristic is proposed that ensures feasible solutions that can be solved in an online system. The algorithm is validated in a case study of electric carshare in Brooklyn, New York, with demand data shared from BMW ReachNow operations in September 2017 (262 vehicle fleet, 231 pickups per day, 303 traffic analysis zones (TAZs)) and charging station location data (18 charging stations with 4 port capacities). The proposed non-myopic rebalancing heuristic reduces the cost increase compared to myopic rebalancing by 38%. Other managerial insights are further discussed.

Citations (22)

Summary

We haven't generated a summary for this paper yet.