Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lexical Sememe Prediction using Dictionary Definitions by Capturing Local Semantic Correspondence

Published 16 Jan 2020 in cs.CL | (2001.05954v1)

Abstract: Sememes, defined as the minimum semantic units of human languages in linguistics, have been proven useful in many NLP tasks. Since manual construction and update of sememe knowledge bases (KBs) are costly, the task of automatic sememe prediction has been proposed to assist sememe annotation. In this paper, we explore the approach of applying dictionary definitions to predicting sememes for unannotated words. We find that sememes of each word are usually semantically matched to different words in its dictionary definition, and we name this matching relationship local semantic correspondence. Accordingly, we propose a Sememe Correspondence Pooling (SCorP) model, which is able to capture this kind of matching to predict sememes. We evaluate our model and baseline methods on a famous sememe KB HowNet and find that our model achieves state-of-the-art performance. Moreover, further quantitative analysis shows that our model can properly learn the local semantic correspondence between sememes and words in dictionary definitions, which explains the effectiveness of our model. The source codes of this paper can be obtained from https://github.com/thunlp/scorp.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.