Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NbO2-based memristive neurons for burst-based perceptron (2001.05663v2)

Published 16 Jan 2020 in cs.ET and eess.SP

Abstract: Neuromorphic computing using spike-based learning has broad prospects in reducing computing power. Memristive neurons composed with two locally active memristors have been used to mimic the dynamical behaviors of biological neurons. In this work, the dynamic operating conditions of NbO2-based memristive neurons and their transformation boundaries between the spiking and the bursting are comprehensively investigated. Furthermore, the underlying mechanism of bursting is analyzed and the controllability of the number of spikes during each burst period is demonstrated. Finally, pattern classification and information transmitting in a perceptron neural network by using the number of spikes per bursting period to encode information is proposed. The results show a promising approach for the practical implementation of neuristor in spiking neural networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.