Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proposal Learning for Semi-Supervised Object Detection (2001.05086v2)

Published 15 Jan 2020 in cs.CV

Abstract: In this paper, we focus on semi-supervised object detection to boost performance of proposal-based object detectors (a.k.a. two-stage object detectors) by training on both labeled and unlabeled data. However, it is non-trivial to train object detectors on unlabeled data due to the unavailability of ground truth labels. To address this problem, we present a proposal learning approach to learn proposal features and predictions from both labeled and unlabeled data. The approach consists of a self-supervised proposal learning module and a consistency-based proposal learning module. In the self-supervised proposal learning module, we present a proposal location loss and a contrastive loss to learn context-aware and noise-robust proposal features respectively. In the consistency-based proposal learning module, we apply consistency losses to both bounding box classification and regression predictions of proposals to learn noise-robust proposal features and predictions. Our approach enjoys the following benefits: 1) encouraging more context information to delivered in the proposals learning procedure; 2) noisy proposal features and enforcing consistency to allow noise-robust object detection; 3) building a general and high-performance semi-supervised object detection framework, which can be easily adapted to proposal-based object detectors with different backbone architectures. Experiments are conducted on the COCO dataset with all available labeled and unlabeled data. Results demonstrate that our approach consistently improves the performance of fully-supervised baselines. In particular, after combining with data distillation, our approach improves AP by about 2.0% and 0.9% on average compared to fully-supervised baselines and data distillation baselines respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Peng Tang (47 papers)
  2. Chetan Ramaiah (6 papers)
  3. Yan Wang (733 papers)
  4. Ran Xu (89 papers)
  5. Caiming Xiong (337 papers)
Citations (95)

Summary

We haven't generated a summary for this paper yet.